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Abstract

The utility of a given outcome is the subjective value of that outcome. Decisions differentially
affect the probabilities (not the utilities) of possible outcomes. The expected utility of a decision is
the average utility of all possible outcomes consequent upon that decision, each one weighted by its
probability under the decision. The optimal decision maximizes expected utility. Whilst utilities are
subjective, the probabilities of outcomes are objective. Thus, the goal of empirical investigation of
dose response should be to provide the particular probability distributions of outcomes as a function
of dosage regimen that are required to compute optimal (dosing) decisions. Given the presence of an
indication for treatment, and the decision to treat with a given drag, the probability distributions in
question are functions not only of dosage (amount and timing), but also of clinical circumstances,
i.e., factors that affect individual pharmacokinetics (PK) and/or pharmacodynamics (PD). Let the set
of these distributions be called, collectively, the response surface for the drug. Given a mapping from
responses to utilities, the response surface is clearly a sufficient condition for optimal dosage
decisions. Just as clearly, however, regulatory authorities cannot require a purely empirical estimate
of it, as this would entail studying all practically realizable dosage regimens in all possible clinical
circumstances, a manifestly impractical task. Perhaps because of the success of empirical hypothesis
testing as a means of establishing drug efficacy, that same paradigm has been applied to regulatory
requirements for dosing (labeling), with unfortunate results: given that the desired goal is
impractical, ad hoc and incomplete strategies have evolved as substitutes, A scientific model-based
view, which represents the response surface as parsimonious parametric functions of key PK/PD
features, and estimates the surface by pooling data across many different studies despite their
different designs resolves the conflict between the empirical demand for data and the decision-
theoretic demand for a complete and continuous response surface. © 2001 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Dose selection is logically viewed as a decision problem: given a set of circumstances
(indication, drug, clinical status of patient) what dosage will yield greatest net benefit?
Decision theory (see, e.g., Ref. [1]) provides a formal system for choosing among decision
options. Whilst it is not my intent to suggest that physicians or regulatory agencies should
advocate formal computation of doses, it is nonetheless instructive to consider the
prescriptions of formal decision theory to gain insight into the key information required
for good decisions, no matter how they be made.

2. Decision theory

Decision theory starts with the notion of utility. Utilities are subjective scores or values
assigned to future states of nature (hereafter, "outcomes") so to produce an interval-valued
preference ordering on those outcomes. Thus, the utility of future good health is greater
than that of future ill-health. Utilities are more than ordinal: a quantitative difference in
utility can in principle be mapped, given a utility on money, to a monetary award to be
paid to an individual who suffers a shift from good to poor health by someone held
responsible for that shift (this kind of computation is undertaken daily by our tort system).
While empirical information may be useful in setting (personal) utilities (e.g., the
incremental yearly health care costs in dollars associated with ill-health, in the example
above), utilities are essentially subjective (for example, the utility of money: some people
care more for it than others, and would sacrifice more time, health, or other goods for it).
The utilities of certain future health states, namely those affected by treatment with a given
drug, are then a key first element in making dosage decisions regarding that drug. As
utilities are subjective, however, they cannot be a matter for detailed regulatory concern,
and therefore will not be discussed further. Rather, we must examine the other elements
called for by decision theory to find those involving empirical information, as it is
regulations and standards for such information that are a legitimate public concern.

Given utilities on all outcomes relevant to the choice of dosage (which will become
clear in a moment), decision theory dictates that the best decision is the one that
maximizes expected utility (EU). The EU of a particular choice is the average utility of
all possible outcomes consequent upon that decision, each one weighted by its probability
under the decision.

Formally, for decisions D,, i = 1, . . ., outcomes Yj,j— 1, . . ., and utility function £/(•), the
optimal decision, Dopt is given by

£>opt = arg max,(EU(A)),

Where

The term Pr( Yj\D,) above is the probability of outcome Y} given decision D,. Different
choices (decisions) can differentially affect EU only via differences in these probabilities:
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any j such that Pr(Yj\D,) is independent of D, indexes an outcome unaffected by the
decision, and hence one that is irrelevant to it.

The definitions above make clear, at least in theory, what are the legitimate obligations
of drug developers and regulators with respect to dosage selection: the developers must
enumerate the relevant Y} (i.e., identify outcomes—efficacies and toxicities—causally
connected to drug use), and estimate Pr(Yj\D^ for dosage decisions D, (combinations of
amount, route, timing—that is the entire prescribed time-course of drug administration),
whilst regulators must assure that all relevant outcomes have indeed been enumerated, and
that the estimates of Pr( ?,|A) have sufficient precision such that Dopt is essentially
invariant under all plausible remaining values of Pr(Yj\D,).

3. A simple example

To make matters concrete, imagine the simplest possible case that retains realistic
features. Let a complete treatment regimen consist of a single administration of a drug
(e.g., a vaccine), and let the dosage choices be only the magnitude of the single dose.
Further, let there be only two outcomes, binary efficacy (yes/no) and binary toxicity (yes/
no). Let the (dis-)utility of toxicity equal that of efficacy, but with reverse sign (this is not
as arbitrary as one might think: for example, for the vaccine example, efficacy might be
preventing a potentially lethal infection, whilst toxicity might be causing a potentially
lethal adverse reaction). In this simple case, the EU of a given dosage is simply the
probability of efficacy at that dose less the probability of toxicity at that dose.

In this simple case, one might imagine that a straight-forward approach to dose-finding
could be used: perform a parallel dose clinical trial with all reasonable doses and estimate
the two probabilities in question for each dose from the results. The simple example just
given allows the following two observations on dosage selection.

3.1. The goal of "dose selection " is not suggested doses

The trial information relevant to dosing is the estimates of the key probabilities
Pr(Yj\D,), not suggested doses per se. Conceivably, two individuals could value the two
outcomes unequally. For them, the optimal doses might differ. Both, however, could
compute their personal optimal dose given their personal subjective utilities and the
common objective outcome probabilities given the doses. Further, the probability of being
exposed to the disease against which the vaccine is a prophylaxis might differ from region
to region or, being exposed, the probability of becoming infected might depend on
personal habits (e.g., smoking). The EU will be less at any given dose in circumstances
with low risk than in one with high risk since Pr(efficacy| dose)=Pr(efficacy| dose,
exposure, infection, death)-P7-(death|infection)-Pr(infection|exposure)-Pr(exposure). The
optimal dose for one region or person is not necessarily optimal for another due to these
objective reasons. As one cannot anticipate all utility functions, nor all risk circumstances,
an important first point emerges: developers and regulators should not attempt to choose
doses, they should attempt instead to obtain and provide the objective information
(probabilities and outcomes) that will allow individuals who may differ with respect to
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utilities and risks to make optimal individual dosage decisions based on those different
utilities/risks.

3.2. The "curse of dimensionality" prevents a strictly empirical approach

The parallel dose trial cannot in fact uncover all the objective information (proba-
bilities) required for optimal dosage decisions. Such a purely empirical approach is
doomed to failure due to the "curse of dimensionality". Just as disease risk may vary from
region to region, or with variation in personal habits, as above, so too will the probability
of efficacy and toxicity at a given dose vary with individual pharmacokinetics (PK), which
determines drug exposure given dose, and pharmacodynamics (PD), which determines
responsiveness given exposure. Thus, even for the simple example above, the apparently
simple univariate probability functions, Pr(Yj\Dj) are really multivariate functions
Pr( 5}|PK, PD, £>,), denoted "response surfaces" hereafter. The "curse of dimensionality"
as it applies to dose selection is this: no practical (set of) parallel dose trial(s) can possibly
enroll enough individuals in each cell of a d x q x ;• table of d dose magnitudes by q PK
"classes" by r PD "classes" (even granting the radical simplification that both of the latter
"variables" are categorical and univariate, rather than continuous and multivariate, as they
in fact are) to estimate outcome probabilities as precisely as will be required for optimal
dosing decisions. I believe that in the face of this apparent impasse, developers and
regulators have retreated to ad hoc and incomplete empirical approaches rather than
recognize that it is unsophisticated empiricism that is the problem, not the magnitude of
the task. In the remainder of this paper I shall attempt to show how a scientific model-
based approach to data gathering and analysis can provide a more complete solution.

4. Learning (estimation) vs. confirming (testing)

Several years ago, I observed [2] that drug development could be seen as two cycles of
a general paradigm for the advancement of empirical sciences, first outlined by GEP Box
[3], and which may be called the "learn/confirm" paradigm. In this view, one first
undertakes empirical exploration with the goal of greater understanding ("learning"), and
then one exposes the conclusions drawn from this learning phase, to rigorous empirical
test ("confirming"). Both phases involve interrogating reality, that is, doing experiments
that involve fixing conditions and observing outcomes, but the designs, analyses, and
goals of these experiments differ markedly. The goal of learning is a predictive model of
the outcomes of interest as a function of both controllable inputs (decisions, or actions)
and uncontrollable inputs (covariates). This description clearly fits the goal of dose
selection as presented above. The goal of testing is to (fail to) falsify a specific hypothesis,
thereby establishing increased credibility for it.

Learning experiments select units for study that vary with respect to covariate values,
administer varying dosages, comedication, etc., and carefully and serially observe the
outcomes of interest. In the analysis phase, a model for the data incorporating prior
knowledge in the form of specific assumptions is proposed and its free variables
(parameters) are fit to the data. The number of parameters in the model is usually kept
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small (a rule of thumb is that there be no more than one parameter per 10 experimental
units studied) so that reasonably precise estimates of them can be obtained. This
parsimony with respect to parameters does not reflect a similar parsimony with respect
to model domain/range: the model typically relates a considerable domain of inputs to a
likewise considerable range of outputs (both domain and range often include the entire real
space of dimension equal to the product of the dimensions of the input variables and those
of the output variables, respectively). A simple example makes the point: a linear
relationship between x (input) and y (outcome) delivers a prediction of any y for any x
using just two parameters (slope and intercept). The choice of a linear relationship is
dictated by (and must be justified with reference to) prior knowledge of the subject-matter
science. The analysis mode is likelihood or Bayesian (see, e.g., Ref. [4]), that is it
conditions on the data and estimates a complete probability model for it. Conditioning on
the data usually implies conditioning on the actual design (i.e., using the "as treated"
principle), rather than on the intended design (i.e. the "intention to treat" principle). If the
two designs differ considerably, then an additional model for the actual design given the
intended design (and other covariates) may be required (for more discussion of this, see
Refs. [5-8]).

Confirming experiments select homogeneous units for study and administer as few
different actions as is compatible with the test to be undertaken. Only a few outcomes are
recorded, and these are observed, usually, only at the beginning and end of the trial. In the
analysis phase, credibility is assigned to a null model that asserts that outcomes are
independent of treatment assignment and that is as free of assumptions on the data (i.e., on
the real world) as possible (in the simplest of circumstances, it can be entirely free of such
assumptions). The analysis mode is frequentist, that is it conditions on a (null) model for
the data, and computes the probability of the data under that model. Inference depends
primarily (exclusively if possible) on the probability model on the data induced by the
hypothesized model and the design (usually the randomized assignment), and is typically
according to the "intention to treat" principle. The strict empiricism of the confirming
approach, eschewing to the extent possible all assumptions about how the data are
generated by real-world "causes" (i.e. exactly what the learning phase seeks to elaborate),
is justified by the testing goal: doing so avoids the inferential circularity that would result
if one assumed the very things one sought to test.

Thus, learning builds on past experience to extend tentative knowledge beyond the
current level, whilst testing provides an objective validation check on those new learnings.
Learning is grand and encompassing, and draws powerful and sweeping conclusions. The
price is that these conclusions and predictions must remain tentative and uncertain,
depending as they do on an extensive network of assumptions, hi contrast, confirming is
certain, but of limited scope, usually providing just one bit of information per confirming
trial—"hypothesis falsified" or "hypothesis not falsified".

5. Dose selection through learning

Applying the above background to the dosage selection problem, a solution appears to
be in sight: if one can tolerate the uncertainty inevitably associated with learning-based
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models (i.e. scientific models of PK/PD), then the curse of dimensionality is lifted.
Parsimonious but powerfully predictive models of the response surface may be available
from experiments of practical size by using study design and analysis methodology
suitable for learning, rather than confirming.

Before discussing further how learning designs and analyses can lift the curse, it will be
useful to consider whether we can accept learning's uncertainty "price" in so important a
matter as dosage decisions. The arguments for this proposition are as follows. First, the
performance of the current dosage selection system is so poor, and pre-approval dosage
selection so uncertain, that the net uncertainty associated with a principled learning
approach is almost certain to be less, not more, than that tolerated at present. Based on an
extensive survey by the Georgetown Center for Drug Development Science of 354
evaluable drag labels out of 499 drugs approved in the US during 1980-1999, it appears
that formal labeling changes for dosage (80% were dosage reductions from initially
approved doses) occurred in about 25% of new chemical entities within the first decade
after they were approved (J. Cross, H. Lee, C. Peck, personal communication, 2000). One
may take this figure to be a downwardly biased estimate of the actual probability that
incorrect dosage information is provided by the pre-approval drag development process, as
the FDA requires changes in labeling only if the current dose appears to be unsafe. Such
action will not be triggered by doses that are discovered, post-approval, to be above those
required for full efficacy, but that are not associated with clear evidence of excessive
toxicity. Excessive doses are an almost inevitable result of the current drag development
process that seeks in early phases of drag development to study the largest safe doses so as
to elicit as strong an efficacy signal as possible (for testing), and then does little in later
development phases to search for smaller yet satisfactory doses.

Nonetheless, if most approved drags are safe and effective, which we have little
reason to doubt, then no great harm is being done by today's very uncertain (and
upwardly biased) dosage selection process, and perhaps then there is no reason to strive
to make that process less uncertain. There are several counter-arguments to this
proposition. First, excessive doses must increase the risk of toxicity, however slightly,
and the lack of "bodies in the streets" does not mean that more subtle harm is not being
done. One hopes, by making dosage selection better, if still imperfect, to avoid some
few but veiy costly errors (seriously dangerous initial dosage for some unusual
individuals), and to make a modest improvement on the average, with attendant modest
savings in time, money, and discomfort on an individual level, but perhaps appreciable
savings across a population. Second, since most drags are priced by the milligram,
excess dosage at the tune of approval inevitably leads to serious revenue loss when the
correct and smaller effective dose is ultimately discovered post-approval. While it is not
immediately apparent that this constitutes a problem for any but the shareholders of
pharmaceutical firms, there are potential public costs. To the extent that missing the right
dose at the time of approval increases downside profit risk, pharmaceutical manufac-
turers must set their prices or market targets (or both) higher to compensate. The first
adds public expense, and the second deprives the public of effective remedies for
indications of low prevalence.

A second reason to accept some (but not excessive) uncertainty in the dose selection
process is this: at the level of treatment of individuals, considerable uncertainty in initial
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dosage is inevitable as inexplicable inter-individual kinetic variability alone is often on the
order of magnitude of 50% or more [9], Thus, dose titration is a sensible and routine part
of medical practice, limiting any harm that error in initial dosage may cause. This
observation supplies the same support as above for leaving the current imperfect system in
place, but the same rebuttal also applies.

6. How modeling helps

Thus far, I have attempted to establish an epistemological framework for thinking about
the empirical information requirements for rational (i.e. justifiable within decision-theory)
dosage selection, and have asserted that these requirements might be met using learning
studies/analyses, as opposed to the current manifestly inadequate approach of using
confirming studies/analyses. In this last section, I try to justify that assertion.

As I have already mentioned, first and foremost, models provide a parsimonious
representation of the input-output relationship (system) for which predictions are desired,
and, if they are securely based in valid scientific knowledge, some credibility for
interpolation between extant data and extrapolation beyond it. They do considerably
more than this, however: most notably, they markedly enhance investigative efficiency by
(i) increasing the amount of information recoverable from any given set of data, and (ii)
allowing principled merging of data from many sources and designs.

Modeling allows more information to be extracted from a fixed quantity of data by
turning noise into signal. Information is synonymous with variation: the total amount of
variation in a set of drug-response data is fixed. This is an upper bound on the
"information" the data contain. Not all variation is "information" however. Total
variation can be regarded as the sum of two parts. The first is the part that correlates
(to use the word non-technically) with variation hi input, especially controllable input
such as dosage. This is called "signal". The second part is the part that's left over, the
part that cannot be linked to input variation. This is called "noise". "Information",
roughly speaking, is proportional to the ratio of signal to noise. Indeed, it is the goal of
modeling and estimation to find the functional forms and constants (parameters) that
capture the signal as fully as the noise permits. As total data variation is fixed, models can
only increase information by transferring noise to signal, and this is precisely what they
do. If, for example, all variation in output ascribable to variation in dose input pattern is
ignored (as it is in an ITT analysis), then all such variation is noise as far as that analysis
is concerned. If actual dose input is recorded, and output is linked to this, then, to the
extent that output varies in response to actual doses ingested, noise is moved to signal,
and one learns about dose—response. This observation, by the way, explains why
confirming designs generally avoid the wide variation in subjects and inputs that would
also make them suitable for learning: since the analysis will not allow assumptions on, for
example, the relationship between age or dosage and response, all covariate and un-
randomized input variation create noise, not signal, thereby reducing study power at any
given size.

Modeling allows data of different precision, design and quantity to be merged. The
key idea here is that of "exchangeability". Data are exchangeable if the joint probability
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model for all of them is unchanged under a permutation of data indices; that is,
exchanging the position of one datum for that of another. It is usually appropriate to
model exchangeable data as independent and identically distributed (iid). These two
properties imply that each datum's contribution to the goodness of fit criterion (the data
likelihood, for example) conforms to the same model form indexed by the same
parameters. For iid data, the only thing that differs from the contribution of one datum
to the next is the value of the observables (i.e. the inputs and the outputs). Explicit
reference to covariates is crucial to establishing exchangeability. If the time of
observation of an output is not an explicit part of the model, then two observed outputs
are not exchangeable, i.e. do not necessarily arise from the same model. When the
model correctly incorporates the effect of time on output, however, then conditional on
time the two observed outputs are exchangeable (arise from the same model); only the
variable, time, differs in the likelihood contribution, not the value of any parameter.
Thus, does each iid datum contribute an independent additive increment of information
to the growing knowledge of a single flexible model. To achieve exchangeability,
models must deal not only with variation in design (inputs), but with other more
statistical features such as random inter-individual variability not apparently related to
input values (handled by so-called hierarchical models [4]), and so-called heteroscedas-
ticity, that is differences in precision of observations (handled by explicit modeling of
residual variability). For a fuller discussion of these and other statistical issues raised
here, see Sheiner and Steimer [10]; an instructive example of the use of modeling to
design dosage can be found in Sheiner et al. [11]. It nicely illustrates the points
presented in this section.

7. Conclusion

A principled intellectual framework for drag development defines the information
required to assure the public that a given drag will, under specified conditions of use,
likely lead to net positive utility. Certain parts of this information structure (the totality of
which may be denoted the drag label) require greater certainty than others. Great certainty
is neither possible nor necessary for that part of the label dealing with individual-specific
dosage. It is not possible because the number of variables interacting with dosage to yield
response is so great that the "curse of dimensionality" prevents strictly empirical
estimation of the (probability) relationships among them, the so-called response surface.
It is not necessaiy because most drags have a fairly wide therapeutic range, and because
individual-specific feedback dosage adjustment can limit any harm done by inappropriate
initial dose selection. This freedom allows one to advocate taking a scientific model-based
("learning") view of dose selection, a view that gains its power in generality and
efficiency by sacrificing unequivocal certainty. Such a view implies, in turn, that dose
selection studies should be inclusive with respect to both patients and dosages, and be
analyzed under a full set of scientifically valid assumptions, according to a likelihood or
Bayesian inferential mode. If this new paradigm for dosage selection is adopted, we may
confidently expect ever less expensive drug development programs to yield ever safer and
more efficacious regimens.
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Appendix A. Discussion 6

A. Breckenridge: A topic that causes huge frustration in drag regulation is the problem
of dosing in children. One often thinks there's a kind of conspiracy to complicate this
problem. What is the contribution of modelling to rationalise this?

L. Sheiner: Essentially what modelling does is decrease the demands on the amount
and structure of the data. I suppose at some point we might, completely theoretically, be
able to apply directly what we learn in the adult to the child. While this goal appears
attainable with respect to phamiacokinetics, as it is simply a scaling problem, the

1 pharmacodynamic side may be a bit more of a problem. For now I would say that what
we might consider as a strategy for paediatric extension of drags studied only in adults is
to use the drag in children as best as physicians think they can to start with; monitor that
use, and use this observational data to improve understanding. Call this phase IV, if you
will. Now observational data has serious problems; for example, one tends to observe most
intensively those people who are the most problematic, and less the people who are not;
this leads to biased "designs", making causal inference very difficult. But by adding a few

, extra observations without invading children too much, these inferential problems can be
mitigated. Nonetheless, one still can't take the (ideal) same number of observations in
everyone; one has to go along with the treatments that seem to be beneficial, and so on. All
those things limit the control one has over the experimental design, and this can only be
dealt with through adding assumptions about how these differences affect the data. Models
provide the implementing methodology for these assumptions; but only science can supply
the assumptions themselves. Modelling, then has a very natural application to the problem
of extending pharmaceuticals to the paediatric population, but to realize that application it
would require a change in our drug development system; an acceptance that we won't
necessarily know the dose very well in children at the time a drag is approved; that we'll
learn that later, through structured observational studies. Even this will require a system
for data gathering, and a willingness to accept basing our conclusions on scientific
assumptions as well as empirical data.

N. Holford: Using the ketorolac example, you didn't really bring in the issue of
variability too much. The response surface appeared to be essentially without variability in
it. How does variability come into the response surface?

L. Sheiner: The response surfaces you saw in those four pictures were probabilities, so
they are inherently variable. The probability that pain relief will be greater than a given
level may be 80%, but any individual will or won't have such relief with that probability. If
the outcome were not a probability of an event, but the value of a variable such as a blood
pressure, there would indeed be an "error" bar around it, to express variability.

N. Holford: It was that kind of variability I was asking you to comment on; clearly, that
was a probabilistic model, and very unusual in that regard; but if it had been blood
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pressure instead of pain then you could've had a response surface on blood pressure and
then perhaps you could translate that into a further probability type of surface when we're
talking about the probability of a particular blood pressure response.

L. Sheiner: Right, it would be a distribution and it would be very hard to draw the
picture. That three-dimensional picture I showed you would have to have uncertainty
zones around the surface to represent individual variation.

P. Joubert: One of the problems I see, also with all the experts I have in my group, is a
major focus on the concentration effect relationship for the favourable dynamic effect with
perhaps less interest in the unfavourable one. Here I think, probabilistic approaches have
been veiy valuable. I am talking about very simple logistic regression on a simple binary
response for an adverse event. There are a couple of examples where prospectively we
defined very clearly the unwanted adverse event that we could not tolerate on the market.
Then by defining a minimal probability that would be acceptable, and relating that to the
concentration effect relationship for efficacy, it helped us to make decisions. So I am
hooked on probabilistic approaches, particularly for safety issues.

L. Sheiner: In PK/PD modelling we started with continuous variables because they
appear to have such high-information content. At first blush a continuous number that is
measured reasonably well, say with two significant digits, has about eight bits of
information, whereas a binary response is just one bit of information. That means that
you need eight times as many patients with binary data vs. continuous data to achieve the
same precision of estimation of a parameter, clearly favouring the use of continuous data.
The problem with this view, first of all, is that many clinical responses come as time to
event data, or binary data, or categorical data (as did the pain relief data I discussed).
We've just got to accept that that's the way these data arise and make the best use of them.
This is an instance of my first law of modelling: make the model fit the data, not the data
fit the model. Secondly, perhaps we are being fooled about continuous variables anyway,
except perhaps when they are carefully measured pharmacological responses or bio-
markers, as Meindert presented. I say this because the reality of biological variability may
mean that even a two-digit precision number may reproducibly indicate only five or six
distinct categories—veiy high, medium-high, high, etc. As we in PK/PD try to deal with
non-continuous data, we are aided by the fact that there is considerable experience with
such data in other fields, and hence well-developed statistical procedures for doing so. The
trick is to find the link between the pharmacology and the outcome; for example, in an
analysis of time-to-event data that Eugene Cox, Stuart Beal and I did, and that will be
coming out in JPP shortly, the link is something called the hazard function, the
instantaneous probability of the event occurring. We thought that it was the natural place
to think of the drug acting. I think the modelling technology is there, the statistics are
there, and what we need to focus on is the science: writing the right kind of models relating
exposure to the right kinds of intermediate variables (here so-called "indirect" PD models
will prove useful) that then generate the observable responses. A remaining problem,
however, is the low information content of binary or time-to-event responses. This means
that one can't build very complex models, and balancing complexity against mechanistic
realism may prove to be an interesting challenge.

M. Reidenberg: Back to your original question on modelling, I think we'd covered the
issues of genetics well. The other thing to look at is the environment, and the examples I
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can give are digitalis toxicity, where we know that you've got to look at potassium levels
and calcium levels to relate concentration to effects; for benzodiazepines, we know
alcoholics are very resistant to the effect. Another factor is age and the whole question of
homeostasis or as George Shriner used to say, homeostenosis, as we get older and older.
An elderly adult with a particular condition, a tumour or anything else, can't react to an
adverse event or a stress the way a young healthy person can. It will be somewhat difficult
to know how to model that, but doable. And I think, as Lew and I were talking, the big
thing that the modelling requires is that you think through explicitly what you intuitively
feel, and then try to weigh it. I think that as we look at these various variables, it's possible
to articulate them, identify them and even to a certain extent weight them in a clinically
meaningful way.

G. Levy: With many classes of drags, but I think particularly about anti-hypertensives,
it is customary to start with a low dose because of concern for postural hypotension, and so
on. But that's also true for a number of other drags. Is it more rational to start with a modal
dose, in other words a dose that is more likely to be appropriate for a particular patient
rather than start everyone with the lowest dose and work your way up?

L. Sheiner: This is a clear example of where decision theory might help. At least it
would give you a clue as to how to approach that question. The best example that I know
of in this regard is phenytoin. Because of its non-linear metabolism, there will be some
people who start at a reasonable dose, but who will develop very high levels, and perhaps
become toxic. So it makes sense to start everyone at a dose lower than the one that would
give the typical individual a level in the middle of the therapeutic range, which would be
the optimal starting dose if the drag level distribution were symmetric (and the "cost" of
under and over-dosing were equal). Indeed, practice has evolved so that we do start
phenytoin out at about the dose level that will produce a modal concentration at the low
end of the therapeutic range, not the middle. In contrast, for a drug that's almost non-toxic,
like penicillin, we routinely give a hundred times more than we need, and that also makes
sense in terms of decision theoiy, here because the cost of under-dosage (inefficacy) so far
exceeds the cost of over-dosage (only monetary). In this regard, we do not, generally, think
about the actual costs: the cost of under-dosage for a chronic condition, for example, is not
inefficacy, but rather simply a delay in efficacy, as we will titrate the dose upwards if we
fail to see an adequate effect. Perhaps taking a somewhat more formal decision theoretic
approach to dose ranging might help by alerting us to the relevant considerations: the
probabilities and costs of various outcomes as a function of dose.

M. Reidenberg: I was going to say basically the same thing that Lew said: that with
your example of hypertension, there's no rash, and the side effects are a lot worse than a
little delay. With an infection, for example, with gram-negative sepsis, we'll start people
with an average dose of an aminoglycoside, accepting that we're going to get some
nephro-toxicity but that the antibiotic will enable them to survive the infection.
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